Are the sorites and liar paradox of a kind?
pp. 349-366
Abstrakt
In this paper I consider attempts to unify the liar and sorites paradoxes. I argue that while they both may be said to exhibit indeterminacy and be alike in this respect, attempts to model the indeterminacy by way of a paracomplete logic result in the two paradoxes diverging in their logical structure in the face of extended paradoxes. If, on the other hand, a paraconsistent logic is invoked then the paradoxes and associated extended paradoxes may be seen to be of a kind in having their source in the indeterminacy of the relevant predicates involved. Paraconsistency then offers the prospect of a unified treatment of these vexing puzzles.
Publication details
Published in:
Tanaka Koji, Berto Francesco, Mares Edwin D., Paoli Francesco (2013) Paraconsistency: logic and applications. Dordrecht, Springer.
Seiten: 349-366
DOI: 10.1007/978-94-007-4438-7_19
Referenz:
Hyde Dominic (2013) „Are the sorites and liar paradox of a kind?“, In: K. Tanaka, F. Berto, E. D. Mares & F. Paoli (eds.), Paraconsistency, Dordrecht, Springer, 349–366.